
Introduction au routage dynamique OSPF avec Bird

Philippe Latu philippe.latu(at)inetdoc.net

https://www.inetdoc.net

Résumé

L'objectif de ce support de travaux pratiques est d'étudier le protocole de routage dynamique OSPF. Cette illustration s'appuie sur une topologie minimale très classique : le triangle. L'originalité consiste à utiliser les VLANs pour distinguer la topologie physique (l'étoile) de la topologie logique (le triangle). Cette version du support utilise le logiciel Bird.

Table des matières

1. Copyright et Licence	2
1.1. Méta-information	
1.2. Conventions typographiques	2
2. Préparer les systèmes pour le routage IPv4 et IPv6	3
3. Valider les communications entre routeurs	∠
4. Configurer les démons OSPF Bird	6
5. Échanger les routes entre Bird et le système	
6. Publier les routes par défaut via OSPF	
7. Consulter les documents de référence	17

1. Copyright et Licence

Copyright (c) 2000,2025 Philippe Latu. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Copyright (c) 2000,2025 Philippe Latu. Permission est accordée de copier, distribuer et/ou modifier ce document selon les termes de la Licence de Documentation Libre GNU (GNU Free Documentation License), version 1.3 ou toute version ultérieure publiée par la Free Software Foundation; sans Sections Invariables; sans Texte de Première de Couverture, et sans Texte de Quatrième de Couverture. Une copie de la présente Licence est incluse dans la section intitulée « Licence de Documentation Libre GNU ».

1.1. Méta-information

Ce document est écrit avec *DocBook* XML sur un système *Debian GNU/Linux*. Il est disponible en version imprimable au format PDF: <u>interco.ospf-bird.pdf</u>.

Toutes les commandes utilisées dans ce document ne sont pas spécifiques à une version particulière des systèmes UNIX ou GNU/Linux. C'est la distribution *Debian GNU/Linux* qui est utilisée pour les tests présentés. Voici une liste des paquets contenant les commandes :

- procps Utilitaires pour le système de fichiers /proc
- iproute2 Outils de contrôle du trafic et du réseau
- ifupdown Outils de haut niveau pour configurer les interfaces réseau
- iputils-ping Outils pour tester l'accessibilité de noeuds réseaux
- bird Internet Routing Daemon

1.2. Conventions typographiques

Tous les exemples d'exécution des commandes sont précédés d'une invite utilisateur ou *prompt* spécifique au niveau des droits utilisateurs nécessaires sur le système.

- Toute commande précédée de l'invite \$ ne nécessite aucun privilège particulier et peut être utilisée au niveau utilisateur simple.
- Toute commande précédée de l'invite # nécessite les privilèges du super-utilisateur.

2. Préparer les systèmes pour le routage IPv4 et IPv6

La première étape consiste à installer les outils sur les trois routeurs, à appliquer une configuration commune et à mettre en place la topologie physique.

1. Installer le paquet bird avant de brasser les postes sur les commutateurs attribués avec le plan d'adressage de la salle de travaux pratiques.

```
$ aptitude search ~ibird
i bird - démon de routage internet
```

Sans configuration particulière, les services bird et bird6 sont lancés.

```
R1:~# systemctl status bird
# bird.service - BIRD Internet Routing Daemon (IPv4)
    Loaded: loaded (/lib/systemd/system/bird.service; enabled; vendor preset: enabled) Active: <a href="mailto:active">active (running)</a> since Sat 2018-10-20 12:58:52 UTC; 2min 23s ago
 Main PID: 751 (bird)
    Memory: 632.0K
    CGroup: /system.slice/bird.service

-751 /usr/sbin/bird -f -u bird -g bird
oct. 20 12:58:52 R1 systemd[1]: Starting BIRD Internet Routing Daemon (IPv4)... oct. 20 12:58:52 R1 systemd[1]: Started BIRD Internet Routing Daemon (IPv4).
oct. 20 12:58:52 R1 bird[751]: Started
Loaded: loaded (/lib/systemd/system/bird6.service; enabled; vendor preset: enabled)
Active: <u>active (running)</u> since Sat 2018-10-20 17:18:50 UTC; 3h 9min ago
  Process: 1728 ExecStartPre=/usr/sbin/bird6 -p (code=exited, status=0/SUCCESS)
  Process: 1722 ExecStartPre=/usr/lib/bird/prepare-environment (code=exited, status=0/SUCCESS)
 Main PID: 1729 (bird6)
    Memory: 788.0K
    CGroup: /system.slice/bird6.service

—1729 /usr/sbin/bird6 -f -u bird -g bird
oct. 20 17:18:50 R1 systemd[1]: Starting BIRD Internet Routing Daemon (IPv6)... oct. 20 17:18:50 R1 systemd[1]: Started BIRD Internet Routing Daemon (IPv6).
oct. 20 17:18:50 R1 bird6[1729]: Started
```

Activer le routage IPv4 et IPv6 au niveau noyau.

Il faut éditer le fichier <u>/etc/sysctl.conf</u> pour fixer les valeurs des paramètres de configuration du routage. Voir la section *Fonctions réseau d'une interface* du support *Configuration d'une interface de réseau local*.

```
#sysctl -p
net.ipv4.conf.default.rp_filter = 1
net.ipv4.conf.all.rp_filter = 1
net.ipv4.ip forward = 1
net.ipv6.conf.all.forwarding = 1
net.ipv4.conf.all.secure_redirects = 1
net.ipv4.conf.all.log_martians = 1
```

3. Créer les sous-interfaces associées aux VLANs sur chacun des routeurs R1, R2 et R3.

Sur le routeur R1, on utilise le script avec les numéros de VLANs 12 et 13 par exemple.

```
R1:~# sh ./subinterfaces.sh 12 13
```

On adapte l'utilisation du même script aux routeurs R2 et R3 avec les numéros de VLANs concernés.

Il est aussi possible d'éditer le fichier <u>/etc/network/interfaces</u> de façon à rendre cette configuration permanente.

3. Valider les communications entre routeurs

Avant d'aborder le déploiement du protocole de routage dynamique, il est nécessaire de valider le raccordement des routeurs aux commutateurs désignés, les communications entre chaque routeur et la visualisation des tables de routage pour les interfaces réseau configurées.

Q1 Quelles sont les opérations à effectuer pour implanter les adresses IPv4 et IPv6 des interfaces correspondant à chacun des VLANs routés ?

Au niveau liaison, les sous-interfaces ont déjà été configurées avec le script subinterfaces.sh. Il reste à paramétrer les adresses de ces sous-interfaces.

Routeur R1

```
R1:~# ip addr add 10.1.12.1/26 brd + dev eth0.12
R1:~# ip -6 addr add 2001:678:3fc:c::1/64 dev eth0.12
R1:~# ip addr add 10.1.13.1/26 brd + dev eth0.13
R1:~# ip -6 addr add 2001:678:3fc:d::1/64 dev eth0.13
```

Routeur R2

```
R2:~# ip addr add 10.1.12.2/26 brd + dev eth0.12
R2:~# ip -6 addr add 2001:678:3fc:c::2/64 dev eth0.12
R2:~# ip addr add 10.1.23.2/26 brd + dev eth0.23
R2:~# ip -6 addr add 2001:678:3fc:17::2/64 dev eth0.23
```

Routeur R3

```
R3:~# ip addr add 10.1.13.3/26 brd + dev eth0.13
R3:~# ip -6 addr add 2001:678:3fc:d::3/64 dev eth0.13
R3:~# ip addr add 10.1.23.3/26 brd + dev eth0.23
R3:~# ip -6 addr add 2001:678:3fc:17::3/64 dev eth0.23
```

Q2 Quelles sont les opérations à effectuer pour valider les communications IP entre routeurs ?

Lancer les tests ICMP usuels entre chaque routeur sur chaque lien actif.

Exemple entre R1 et R2

```
R1:~# ping -qc2 10.1.12.2
PING 10.1.12.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 6ms
rtt min/avg/max/mdev = 0.068/0.309/0.551/0.242 ms

R1:~# ping -qc2 2001:678:3fc:c::2
PING 2001:678:3fc:c::2(2001:678:3fc:c::2) 56 data bytes
--- 2001:678:3fc:c::2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 19ms
rtt min/avg/max/mdev = 0.070/0.295/0.521/0.226 ms
```

L'opération est à répéter sur chaque lien entre deux routeurs reliés sur le même VLAN.

Q3 Comment visualiser la table de routage au niveau système?

Utiliser la commande ip pour visualiser la table de routage

Toutes les routes affichées correspondent à des réseaux IPv4 et IPv6 sur lesquels le routeur est directement connecté via une interface active correctement configurée.

Routeur R1 - niveau système

```
R1:~# ip route ls
default via 192.0.2.1 dev eth0 onlink
10.1.12.0/26 dev eth0.12 proto kernel scope link src 10.1.12.1
10.1.13.0/26 dev eth0.13 proto kernel scope link src 10.1.13.1
192.0.2.0/27 dev eth0 proto kernel scope link src 192.0.2.7

R1:~# ip -6 route ls
2001:678:3fc:a::/64 dev eth0 proto kernel metric 256 pref medium
2001:678:3fc:c::/64 dev eth0.12 proto kernel metric 256 pref medium
2001:678:3fc:d::/64 dev eth0.13 proto kernel metric 256 pref medium
fe80::/64 dev eth0 proto kernel metric 256 pref medium
fe80::/64 dev eth0.12 proto kernel metric 256 pref medium
fe80::/64 dev eth0.13 proto kernel metric 256 pref medium
default via fe80::dc02:44ff:fe64:4834 dev eth0 metric 1024 onlink pref medium
```

Routeur R2 - niveau système

```
R2:~# ip route ls
10.1.12.0/26 dev eth0.12 proto kernel scope link src 10.1.12.2
10.1.23.0/26 dev eth0.23 proto kernel scope link src 10.1.23.2

R2:~# ip -6 route ls
2001:678:3fc:c::/64 dev eth0.12 proto kernel metric 256 pref medium
2001:678:3fc:17::/64 dev eth0.23 proto kernel metric 256 pref medium
fe80::/64 dev eth0 proto kernel metric 256 pref medium
fe80::/64 dev eth0.12 proto kernel metric 256 pref medium
fe80::/64 dev eth0.23 proto kernel metric 256 pref medium
```

Routeur R3 - niveau système

```
R3:~# ip route ls
10.1.13.0/26 dev eth0.13 proto kernel scope link src 10.1.13.3
10.1.23.0/26 dev eth0.23 proto kernel scope link src 10.1.23.3

R3:~# ip -6 route ls
2001:678:3fc:d:/64 dev eth0.13 proto kernel metric 256 pref medium
2001:678:3fc:17::/64 dev eth0.23 proto kernel metric 256 pref medium
fe80::/64 dev eth0 proto kernel metric 256 pref medium
fe80::/64 dev eth0.13 proto kernel metric 256 pref medium
fe80::/64 dev eth0.23 proto kernel metric 256 pref medium
```

Q4 Comment activer la fonction routage du noyau Linux?

Reprendre l'instruction présentée dans le document *Configuration d'une interface de réseau local : activation du routage*.

L'opération doit être répétée sur chacun des trois routeurs pour que le protocole de routage dynamique puisse fonctionner normalement.

Si cette fonction n'est pas active dans le noyau Linux, aucune décision d'acheminement d'un paquet d'une interface vers l'autre ne sera prise. Les paquets à router sont simplement jetés.

Les instructions d'activation de la fonction de routage sont données dans la section Préparation des routeurs.

4. Configurer les démons OSPF Bird

Dans cette section, on introduit les premières commandes de configuration du protocole de routage dynamique OSPF qui permettent d'activer le protocole puis d'ajouter des entrées de réseau dans la base de données de ce protocole.

Q5 Quels sont les fichiers de configuration à éditer pour activer les protocoles OSPFv2 et OSPFv3 sur le routeur?

Une fois le paquet <u>bird</u> installé, deux démons distincts sont lancés : <u>bird</u> pour IPv4 et <u>bird6</u> pour IPv6. Rechercher dans la liste des fichiers fournis avec le paquet, les exemples de fichiers de configuration.

Les fichiers de configuration sont au nombre de deux. Ils sont placés dans le dossier <u>/etc/bird/</u>. Deux exemples de ces fichiers sont données dans le dossier de documentation du paquet.

```
R1:~# dpkg -L bird | grep example
/usr/share/doc/bird/examples
/usr/share/doc/bird/examples/bird.conf.gz
/usr/share/doc/bird/examples/bird6.conf.gz
```

Q6 Comment accéder à l'état des différents protocoles actifs pour chaque démon ?

À chaque édition d'un fichier de configuration, il faut relancer le démon correspondant. C'est à nouveau dans la liste des fichiers du paquet que l'on identifie les outils d'accès à la configuration active des deux démons.

Il faut consulter la section Remote control de la documentation Bird. Les commandes utiles pour cette question sont les suivantes.

show status show protocols

Chaque démon dispose d'une console propre avec les outils **birdc** et **birdc6**. Ce sont ces deux consoles qui permettent de connaître le statut du démon, la liste des protocoles actifs et les informations relatives au fonctionnement de ces protocoles.

```
R1:~# birdc
BIRD 1.6.4 ready.
bird> sh status
BIRD 1.6.4
Router ID is 0.0.4.1
Current server time is 2018-10-20 20:59:04
Last reboot on 2018-10-20 16:54:04
Last reconfiguration on 2018-10-20 20:58:58
Daemon is up and running
R1:~# birdc6
```

```
R1:~# birdc6
BIRD 1.6.4 ready.
bird> sh status
BIRD 1.6.4
Router ID is 0.0.6.1
Current server time is 2018-10-20 21:00:22
Last reboot on 2018-10-20 17:18:49
Last reconfiguration on 2018-10-20 17:18:49
Daemon is up and running
```

De la même façon, on peut connaître la liste des protocoles actifs de chaque démon.

```
bird> sh protocols
name proto table state since info
device1 Device master up 16:54:04
kernel1 Kernel master up 20:58:58
```

Q7 Comment activer le protocole de routage OSPF et attribuer l'identifiant du routeur?

Consulter le document BIRD User's Guide à la section OSPF pour activer le protocole. Consulter les tableaux des plans d'adressage pour obtenir la valeur de l'identifiant du routeur à configurer.

On édite les fichiers <u>/etc/bird.conf</u> et <u>/etc/bird6.conf</u> avec les paramètres suivants.

router id IPv4 address protocol ospf <name> area <id>

Voici une copie des fichiers du routeur R1.

```
R1:~# grep -v ^# /etc/bird/bird.conf
router id 0.0.1.4;
```

```
protocol kernel {
       scan time 10:
        import none;
}
protocol device {
        scan time 10;
}
protocol ospf OSPFv2R1 {
        area 0 {
R1:~# grep -v ^# /etc/bird/bird6.conf
router id 0.0.1.6;
protocol kernel {
        scan time 10;
        import none;
3
protocol device {
        scan time 10;
3
protocol ospf OSPFv3R1 {
       area 0 {
```

Une fois les deux services relancés, on peut vérifier que les éléments demandés sont bien présents dans la configuration des démons de routage OSPF.

```
R1:~# systemctl restart bird
R1:∼# birdc sh protocols
BIRD 1.6.4 ready.
name proto table state since kernel1 Kernel master up 09:38:34 device1 Device master up 09:38:34
                                                         info
                                                         Alone
R1:~# birdc sh ospf state
BIRD 1.6.4 ready.
area 0.0.0.0
          router 0.0.1.4
                   distance 0
R1:~# systemctl restart bird6
R1:∼# birdc6 sh protocols
BIRD 1.6.4 ready.
name proto table state since kernel1 Kernel master up 09:42 device1 Device master up 09:42
                                                         info
                                          09:42:33
OSPFν3R1 OSPF
                     master
                                          09:42:33
                                                         Alone
R1:~# birdc6 sh ospf state
BIRD 1.6.4 ready.
area 0.0.0.0
          router 0.0.1.6
                    distance 0
```

Q8 Comment activer et valider le protocole de routage OSPF pour les réseaux IPv4 et IPv6 connus de chaque routeur ?

Consulter la section OSPF de la documentation BIRD User's Guide ainsi que l'exemple OSPF example. Il suffit d'adapter les exemples avec les noms d'interfaces en fonction du contexte.

On édite les fichiers <u>/etc/bird.conf</u> et <u>/etc/bird6.conf</u> avec les paramètres suivants.

interface <interface pattern> authentication none|simple|cryptographic;

On vérifie au niveau console (Voir Remote control) l'état de la base de connaissance des deux processus OSPF avec la commande suivante.

show ospf state

Routeur R1: OSPFv2 & interfaces

Routeur R1: base de connaissance OSPFv2

Dans la copie d'écran ci-dessous, on relève les deux routeurs voisins de <u>R1</u> ainsi que le réseau distant <u>10.1.23.0/26</u>.

```
R1:∼# birdc sh ospf state
BIRD 1.6.4 ready.
area 0.0.0.0
        router 0.0.1.4
                 distance 0
                 network 10.1.12.0/26 metric 10
                 network 10.1.13.0/26 metric 10
        router 0.0.2.4
                 distance 10
                 network 10.1.12.0/26 metric 10
                 network 10.1.23.0/26 metric 10
        <u>router 0.0.3.4</u>
                 distance 10
                 network 10.1.13.0/26 metric 10
network 10.1.23.0/26 metric 10
        network 10.1.12.0/26
                 dr 0.0.2.4
                 distance 10
                 router 0.0.2.4
                 router 0.0.1.4
        network 10.1.13.0/26
dr 0.0.3.4
                 distance 10
                 router 0.0.3.4
                 router 0.0.1.4
        network 10.1.23.0/26
                 dr 0.0.2.4
                 distance 20
                 router 0.0.2.4
                 router 0.0.3.4
```

Routeur R1: OSPFv3 & interfaces

3

Routeur R1: base de connaissance OSPFv3

Dans la copie d'écran ci-dessous, on relève les deux routeurs voisins de <u>R1</u> ainsi que le réseau distant 2001:678:3fc:17::/64.

```
R1:~# birdc6 sh ospf state
BIRD 1.6.4 ready.
area 0 0 0 0
         router 0.0.1.6
                  distance 0
                  network [0.0.1.6-2] metric 10
network [0.0.1.6-3] metric 10
         router 0.0.2.6
                   distance 10
                  network [0.0.1.6-2] metric 10
network [0.0.3.6-3] metric 10
         router 0.0.3.6
                   distance 10
                  network [0.0.1.6-3] metric 10
network [0.0.3.6-3] metric 10
         network [0.0.1.6-2]
                   distance 10
                   router 0.0.1.6
                   router 0.0.2.6
                   address 2001:678:3fc:c::/64
         network [0.0.1.6-3]
                   distance 10
                   router 0.0.1.6
                   router 0.0.3.6
                   address 2001:678:3fc:d::/64
         network [0.0.3.6-3]
                   distance 20
                   router 0.0.3.6
                   router 0.0.2.6
                   address 2001:678:3fc:17::/64
```

Q9 Comment identifier le type de réseau des interfaces actives d'un routeur pour chaque version du protocole de routage OSPF ?

La question précédente montre que la configuration des deux processus <u>bird</u> et <u>bird6</u> est basée sur l'activation du protocole par interface. Il faut donc rechercher dans la section Remote control l'instruction qui donne l'état des interfaces actives.

show ospf interface

Comme on utilise uniquement des liens Ethernet dans ce contexte de travaux pratiques, le type de réseau est nécessairement diffusion.

Routeur R1: OSPFv2 & interfaces

```
R1:~# birdc sh ospf interface
BIRD 1.6.4 ready.
OSPEv2R1:
Interface eth0.12 (10.1.12.0/26)
           Tupe: broadcast
           Area: 0.0.0.0 (0)
           State: Backup
           Priority: 1
           Cost: 10
Hello timer: 10
           Wait timer: 40
Dead timer: 40
           Retransmit timer: 5
           Designated router (ID): 0.0.2.4
Designated router (IP): 10.1.12.2
           Backup designated router (ID): 0.0.1.4
Backup designated router (IP): 10.1.12.1
Interface eth0.13 (10.1.13.0/26)
           <u>Type: broadcast</u>
Area: 0.0.0.0 (0)
State: Backup
           Priority: 1
           Cost: 10
           Hello timer: 10
           Wait timer: 40
Dead timer: 40
           Retransmit timer: 5
```

```
Designated router (ID): 0.0.3.4
Designated router (IP): 10.1.13.3
Backup designated router (ID): 0.0.1.4
Backup designated router (IP): 10.1.13.1
```

Routeur R1: OSPFv3 & interfaces

```
R1:~# birdc6 sh ospf interface
BIRD 1.6.4 ready.
OSPEv3R1:
Interface eth0.12 (IID 0)
           <u>Type: broadcast</u>
Area: 0.0.0.0 (0)
            State: DR
            Priority: 1
            Cost: 10
            Hello timer: 10
           Wait timer: 40
Dead timer: 40
            Retransmit timer: 5
           Designated router (ID): 0.0.1.6
Designated router (IP): fe80::70de:4fff:fe1d:68b4
Backup designated router (ID): 0.0.2.6
           Backup designated router (IP): fe80::943a:41ff:fe65:7307
Interface eth0.13 (IID 0)
           Type: broadcast
            Area: 0.0.0.0 (0)
            State: DR
            Priority: 1
            Cost: 10
            Hello timer: 10
            Wait timer: 40
            Dead timer: 40
            Retransmit timer: 5
           Designated router (ID): 0.0.1.6
Designated router (IP): fe80::70de:4fff:fe1d:68b4
Backup designated router (ID): 0.0.3.6
Backup designated router (IP): fe80::3032:e9ff:fe73:6322
```

Q10 Comment obtenir la liste du ou des routeurs voisins pour chaque processus de protocole de routage dynamique OSPFv2 ou OSPFv3 ?

Dès qu'une interface est active, il y a émission de paquets <u>HELLO</u> et si un routeur avec un démon OSPF envoie aussi des paquets <u>HELLO</u> dans le même VLAN, les deux routeurs cherchent à former une adjacence.

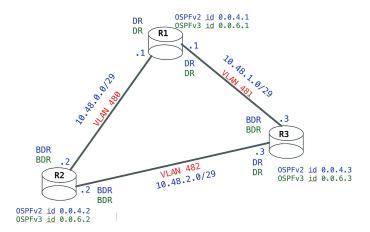
La commande utile de la section Remote control est la suivante.

show ospf neighbors

À nouveau sur le routeur <u>R1</u>, voici un exemple de liste de routeurs OSPF voisins dans laquelle on reconnaît les identifiants des routeurs <u>R2</u> et <u>R3</u>.

```
R1:∼# birdc sh ospf neighbors
BIRD 1.6.4 ready.
                                        DTime Interface Router IP eth0.12
OSPFv2R1:
                            State
Router ID
                Full/DR
Full/DR
                                 00:31
                                          eth0.12
                                                     10.1.12.2
                                 00:34 eth0.13
R1:~# birdc6 sh ospf neighbors
BIRD 1.6.4 ready.
OSPFv3R1:
                                                 Interface Router IP
  fe80::943a:41ff:fe65:7307
Router ID
                              State
                Full/BDR
                                          eth0.12
                                 00:33
0.0.2.6 1
0.0.3.6
                Full/BDR
                                 00:36
                                          eth0 13
                                                     fe80::3032:e9ff:fe73:6322
```

Q11 Comment identifier le rôle des différentes interfaces des routeurs pour chacun des liens du triangle de la topologie logique ?



Avertissement

La réponse à cette question suppose que les démons OSPF des trois routeurs de la topologie logique en triangle aient convergé. On doit repérer l'état <u>Full</u> pour les listes de routeurs voisins.

De plus, la réponse varie en fonction de l'ordre d'activation des démons OSPF des différents routeurs. En effet, un routeur peut être élu routeur désigné (DR) en l'absence de routeurs voisins. Cette élection n'est pas remise en cause tant qu'il n'y pas de changement d'état de lien.

À partir des résultats des questions précédentes sur les interfaces actives, il est possible de compléter le schéma de la topologie étudiée avec l'état des interfaces pour chacun des trois liens.

Sur un même réseau de diffusion, il est possible de trouver plusieurs routeurs OSPF. Établir une relation de voisinage et procéder aux échanges de bases de données topologiques entre chaque routeur revient à constituer un réseau de relations complètement maillé. À chaque recalcul de topologie, ce réseau complètement maillé est inefficace. C'est la raison pour laquelle la notion de routeur référent ou *Designated Router* a été introduite. Lors d'un recalcul de topologie, tous les routeurs s'adressent au référent qui correspond au cœur d'un réseau en topologie étoile.

Dans le contexte de la topologie triangle étudiée, il y a bien élection d'un routeur référent et d'un routeur référent de secours. Cependant, comme il n'y a que deux routeurs par domaine de diffusion ou VLAN, on ne peut pas caractériser l'utilité de cette élection.

Q12 Quelles sont les réseaux IPv4 et IPv6 présents dans la base calcul du protocole OSPF?

On cherche a visualiser la liste des préfixes des réseaux connus des deux démons OSPF.

La commande utile dans les deux consoles est la suivante.

show route

Une fois que les trois routeurs de la topologie ont convergé, chaque démon connaît les trois préfixes qui correspondent aux trois côtés du triangle. Un routeur correspond à un sommet du triangle et il doit apprendre le préfixe réseau du côté opposé via ses deux routeurs voisins.

Voici la vue depuis le routeur R1.

Les valeurs notées entre parenthèses correspondent à la métrique du lien pour joindre le réseau noté à gauche. Pour le protocole OSPF, le calcul de métrique se fait à partir du coût de lien par défaut pour chaque interface active. La valeur par défaut est <u>10</u>

Les deux premiers réseaux de la table sont joignable via un lien direct ; soit une métrique de <u>10</u>. Le troisième réseau est joignable via deux liens Ethernet ; d'où la métrique de <u>20</u>.

Pour les réseaux IPv6, on retrouve les mêmes métriques puisque la topologie est identique pour les deux version du protocole IP.

```
R1:~# birdc6 sh route
BIRD 1.6.4 ready.
2001:678:3fc:d::/64 dev eth0.13 [OSPFv3R1 10:01:30] * I (150/10) [0.0.1.6]
2001:678:3fc:c::/64 dev eth0.12 [OSPFv3R1 10:05:36] * I (150/10) [0.0.1.6]
2001:678:3fc:17::/64 via fe80::3032:e9ff:fe73:6322 on eth0.13 [OSPFv3R1 10:05:38] * I (150/20) [0.0.3.6]
```

Avec OSPFv3, les relations de voisinage entre routeurs utilisent nécessairement les adresses de lien local appartenant au préfixe <u>fe80::/10</u>.

Q13 Comment utiliser toutes les solutions disponibles pour joindre le réseau distant depuis chacun des sommets de la topologie triangle ?

Avec la topologie logique triangle, le réseau du côté opposé à un sommet (au routeur) doit être joignable depuis les deux réseaux locaux raccordés à ce routeur. Nous sommes donc dans un contexte multi chemins.

Consulter la section OSPF de la documentation BIRD User's Guide et rechercher l'intsruction qui permet l'utilisation de plusieurs chemins à coût égal.

ecmp switch [limit number]

La fonction réseau du noyau Linux recherchée est connue sous le nom Equal Cost Multi Path ou ECMP.

Sur le routeur R1, la configuration du bloc d'instructions OSPF de chaque processus est la suivante.

Relativement aux questions précédentes, les tables de routage proposées par les processus <u>bird</u> et <u>bird6</u> font apparaître les deux chemins disponibles pour joindre le réseau distant du sommet de la topologie triangle.

5. Échanger les routes entre Bird et le système

Dans la section précédente, tous les échanges de préfixes réseau IPv4 et IPv6 se font entre les démons Bird installés sur les trois routeurs de la topologie étudiée. Il faut maintenant être capable d'échanger les résultats des traitements OSPFv2 et OSPFv3 avec le sous-système réseau du noyau de chaque routeur.

- Sur <u>R1</u>, les deux démons Bird doivent importer la route par défaut déjà connue au niveau système. De plus, les
 routes vers les réseaux fictifs de <u>R2</u> et <u>R3</u> apprise via OSPF doivent être exportées vers le sous-système réseau
 du noyau de <u>R1</u>.
- Sur les routeurs R2 et R3, les routes par défaut apprises via OSPF doivent être exportées vers le sous-système réseau du noyau. De plus les routes des réseaux fictifs doivent être importées dans les démons Bird pour être publiées via OSPF.

Avertissement

Les résultats des questions de cette section ne sont visibles que si les routes sont déjà présentes, soit dans les démons de routage Bird, soit au niveau système.

Q14 Comment faire pour que les routes connues du sous-système réseau du noyau Linux soient importées dans les deux démons bird et bird6?

Consulter la section *kernel* de la documentation BIRD User's Guide à la recherche des paramètres d'importation. Les commandes utiles pour cette question sont les suivantes.

import learn switch

Pour cette question, les configurations des démons <u>bird</u> et <u>bird6</u> sont identiques quel que soit le routeur considéré. Voici un extrait de fichier de configuration.

Tant que les questions sur l'ajout de réseaux fictifs ne sont pas traitées, seul les démons du routeur <u>R1</u> ont un résultat observable. Les routes par défaut sont importées dans les démons Bird.

```
R1:~# birdc show route 0.0.0.0/0
BIRD 1.6.4 ready.
0.0.0.0/0 via 192.0.2.1 on eth0 [kernel1 13:47:04] * (10)

R1:~# birdc6 show route ::/0
BIRD 1.6.4 ready.
::/0 via fe80::dc02:44ff:fe64:4834 on eth0 [kernel1 2018-10-21] * (10)
```

Q15 Comment faire pour que les routes calculées par les processus <u>bird</u> et <u>bird6</u> soient soumises au soussystème réseau du noyau Linux ?

Consulter la section *kernel* de la documentation BIRD User's Guide à la recherche des paramètres d'exportation. La commande utile pour cette question est la suivante.

export

En reprenant l'exemple du routeur R1, la configuration des blocs d'instructions kernel de chaque processus devient :

```
R1:~# sed -n '/protocol kernel/,/^}/p' /etc/bird/bird.conf
protocol kernel {
         scan time 10;
         import all;
         learn yes;
         export all;  # Actually insert routes into the kernel routing table
}
```

Avec la commande **ip** au niveau système, on voit apparaître les «sources» d'alimentation de la table de routage du système en question : <u>kernel</u> et <u>bird</u>.

```
R1:~# ip route ls

default via 192.0.2.1 dev eth0 onlink

10.1.12.0/26 dev eth0.12 proto kernel

10.1.13.0/26 dev eth0.13 proto kernel scope link src 10.1.12.1

10.1.23.0/26 proto bird

nexthop via 10.1.12.2 dev eth0.12 weight 1

nexthop via 10.1.13.3 dev eth0.13 weight 1

192.0.2.0/27 dev eth0 proto kernel scope link src 192.0.2.7

R1:~# ip -6 route ls

2001:678:3fc:a::/64 dev eth0 proto kernel metric 256 pref medium

2001:678:3fc:d::/64 dev eth0.12 proto kernel metric 256 pref medium

2001:678:3fc:d::/64 dev eth0.13 proto kernel metric 256 pref medium

2001:678:3fc:d::/64 dev eth0.13 proto kernel metric 256 pref medium

2001:678:3fc:d::/64 dev eth0.13 proto kernel metric 256 pref medium

2001:678:3fc:d::/64 dev eth0.3 devenel metric 256 pref medium

680::/64 dev eth0 proto kernel metric 256 pref medium

fe80::/64 dev eth0.12 proto kernel metric 256 pref medium

fe80::/64 dev eth0.13 proto kernel metric 256 pref medium

fe80::/64 dev eth0.13 proto kernel metric 256 pref medium

default via fe80::dc02:44ff:fe64:4834 dev eth0 metric 1024 onlink pref medium
```

6. Publier les routes par défaut via OSPF

Dans la topologie logique étudiée, le routeur <u>R1</u> dispose d'un lien vers l'Internet. On considère ce lien comme la route par défaut vers tous les réseaux non connus de l'aire OSPF contenant les trois routeurs.

Il est possible de publier une route par défaut via le protocole OSPF depuis le routeur <u>R1</u> vers les deux routeurs <u>R2</u> et <u>R3</u>.

Avant publication de la route par défaut depuis le routeur <u>R1</u>, les démons OSPF n'utilisent que des annonces LSA (*Link State Advertisement*) de type 1 et 2. Voici un tableau de référence pour le codage des LSAs.

Tableau 1. Codage des annonces OSPF

OSPFv2	Description	OSPFv3	Description
1	Router LSA	0x2001	Router LSA
2	Network LSA	0x2002	Network LSA
3	Network Summary LSA	0x2003	Inter-Area Prefix LSA for ABRs
4	ASBR Summary LSA	0x2004	Inter-Area Router LSA for ABRs
5	AS-external LSA	0x4005	AS-external LSA
6	Group Membership LSA	0x2006	Group Membership LSA
7	Not So Stubby Area LSA	0x2007	Type-7 LSA
8		0x2008	Link LSA
9		0x2009	Intra-Area Prefix LSA

- ABR: Area Border Router
- ASBR: Autonomous System Border Router

Les listes des annonces connues du routeur <u>R1</u> avant publication des routes par défaut sont données dans les copies d'écran ci-dessous.

area 0	.0.0.0							
0001 0002 0001 0002	LS ID 0.0.1.4 0.0.2.4 10.1.12.2 0.0.3.4 10.1.13.3 10.1.23.3	Router 0.0.1.4 0.0.2.4 0.0.2.4 0.0.3.4 0.0.3.4 0.0.3.4	Sequence 80000148 80000146 80000003 80000147 80000003 80000003	Age 1465 1466 1466 1469 1470 375	Checksum 88f0 70f2 3439 a4b6 2148 bf9e			
	birdc6 show ospf .6.4 ready.	lsadb						
Area 0	.0.0.0							
2009 2001 2009 2002 2009 2001 2009 2002 2009 2002 2009	LS ID 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.2 0.0.0.2 0.0.0.0 0.0.0.2 0.0.0.2 0.0.0.3 0.0.0.3	Router 0.0.1.6 0.0.1.6 0.0.2.6 0.0.2.6 0.0.2.6 0.0.2.6 0.0.3.6 0.0.3.6 0.0.3.6 0.0.3.6 0.0.3.6	Sequence 8000015c 8000015f 80000151 80000001 80000001 80000153 8000001 80000001 80000001 80000003 80000003	Age 1643 1643 1647 1647 1647 1646 1646 1646 1646 575 575	Checksum 116b 7e2b 4243 9a18 9976 a95c 4c35 9c12 9b72 c939 9a6f ca2a			
	LS ID 0.0.0.2 0.0.0.2	Router 0.0.1.6 0.0.2.6	Sequence 80000137 8000012e	Age 1648 575	Checksum c5df 5640			
Link e	th0.13							

```
Type LS ID Router Sequence Age Checksum
0008 0.0.0.3 0.0.1.6 80000137 1646 e1c1
0008 0.0.0.2 0.0.3.6 8000012e 610 62dc
```

Q16 Quelle est la condition préalable à respecter pour que le routeur <u>R1</u> soit en mesure de publier une route par défaut via OSPF ?

Avant de procéder à l'importation de route dans les démons Bird, on doit s'assurer de la présence des deux routes par défaut IPv4 et IPv6 dans les tables de routage au niveau système.

Sur le routeur R1 uniquement, on valide la présence des routes par défaut.

```
R1:~# ip route ls default default via 192.0.2.1 dev eth0 onlink
R1:~# ip -6 route ls default default via fe80::dc02:44ff:fe64:4834 dev eth0 metric 1024 onlink pref medium
```

Q17 Comment valider l'importation des routes par défaut dans les deux démons <u>bird</u> et <u>bird6</u>?

L'importation des routes depuis le niveau système dans les démons Bird a été traitée à la Section 5, « Échanger les routes entre Bird et le système ». Ici, on se contente de vérifier la présence des routes par défaut au niveau des consoles de chaque démon.

On peut spécifier le préfixe réseau directement dans l'affichage de la table de routage de chaque démon.

```
R1:~# birdc show route 0.0.0.0/0
BIRD 1.6.4 ready.
0.0.0.0/0 via 192.0.2.1 on eth0 [kernel1 2018-10-27] * (10)

R1:~# birdc6 show route ::/0
BIRD 1.6.4 ready.
::/0 via fe80::dc02:44ff:fe64:4834 on eth0 [kernel1 2018-10-27] * (10)
```

Q18 Comment créer les filtres qui serviront à exporter les routes par défaut dans la configuration de chaque démon pour les protocoles OSPFv2 et OSPFv3 ?

Il faut consulter la documentation BIRD User's Guide aux sections *Filters* et *OSPF* pour trouver des exemples de syntaxe.

Voici une copie d'écran pour chaque démon.

Q19 Comment appliquer les filtres de la question précédente pour que les routes par défaut soient exportées via OSPF à destination des autres routeurs ?

Il faut consulter la documentation BIRD User's Guide à la section *OSPF* et rechercher un exemple de la directive suivante.

export

Voici une copie d'écran pour chaque démon avec l'exportation dans le processus OSPF en fonction du filtre défini préalablement.

Q20 Quelles sont les nouvelles annonces LSA apparues après exportation des routes par défaut depuis $\underline{R1}$ vers les deux autres routeurs de la topologie triangle ?

À partir du Tableau 1, « Codage des annonces OSPF » donné en début de section, donner le nouveau rôle du routeur R1.

Une fois que l'exportation des routes par défaut dans OSPF est effective sur <u>R1</u>, ce routeur devient *Autonomous System Border Router* ou ASBR. Dès lors, il émet des annonces de type <u>5</u> que l'on peut identifier dans les bases de chaun des trois routeurs de l'aire OSPF.

Par exemple, on obtient les résultats suivants sur le routeur R2.

```
R2:~# birdc show ospf lsadb type 5
BIRD 1.6.4 ready.
Global
       LS ID
                        Router
                                        Sequence
                                                        Checksum
                                                          afb9
 0005 0.0.0.0
                       0.0.1.4
                                        80000001 1570
R2:~# birdc6 show ospf lsadb type 5
BIRD 1.6.4 ready.
Global
 Туре
       LS ID
                        Router
                                        Sequence
                                                   Age
                                                        Checksum
                                        80000001
                                                  1574
 4005 0.0.0.0
                       0.0.1.6
```

Q21 Comment valider l'exportation des routes par défaut depuis les deux démons \underline{bird} et $\underline{bird6}$ vers le niveau système sur les routeurs $\underline{R2}$ et $\underline{R3}$?

L'exportation des routes depuis les démons Bird vers le système a été traitée à la Section 5, « Échanger les routes entre Bird et le système ». Ici, on se contente de vérifier la présence des routes par défaut au niveau système sur R2 et R3.

Voici une copie d'écran pour le routeur <u>R2</u> qui caractérise le fait que les routes par défaut ont été apprises via Bird.

```
R2:~# ip route ls default default via 10.1.12.1 dev eth0.12 proto bird

R2:~# ip -6 route ls default default via fe80::70de:4fff:fe1d:68b4 dev eth0.12 proto bird metric 1024 pref medium
```

Si la table de routage du routeur d'accès à Internet contient les routes statiques vers les réseaux de l'aire OSPF, il est possible de lancer les tests ICMP classiques. Voici deux exemples depuis le routeur R2.

```
R2:~# ping -qc2 9.9.9.9
PING 9.9.9 (9.9.9.9) 56(84) bytes of data.

--- 9.9.9.9 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 2ms
rtt min/avg/max/mdev = 13.796/13.910/14.024/0.114 ms

R2:~# ping -qc2 2620:fe::fe
PING 2620:fe::fe(2620:fe::fe) 56 data bytes

--- 2620:fe::fe ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 3ms
rtt min/avg/max/mdev = 43.986/44.802/45.618/0.816 ms
```

7. Consulter les documents de référence

Configuration d'une interface réseau

Le support *Configuration d'une interface de réseau local* présente les opérations de configuration d'une interface réseau et propose quelques manipulations sur les protocoles de la pile TCP/IP

Introduction au routage inter-VLAN

Le support *Routage Inter-VLAN* introduit le principe du routage inter-VLAN ainsi que ses conditions d'utilisation. C'est aussi un support de travaux pratiques dans lequel on n'utilise que du routage statique et de la traduction d'adresses sources (S-NAT) pour acheminer le trafic utilisateur entre les différents réseaux.