Introduction aux systèmes GNU/Linux

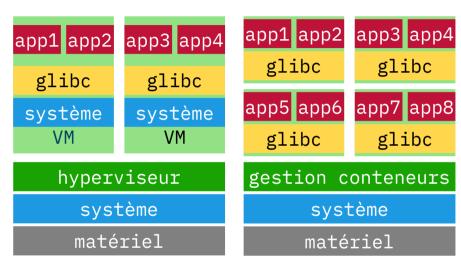
Module IntroLinux – S25E01

Philippe Latu / Université de Toulouse inetdoc.net

Objectif DevOps De l'idée à la production. → Un flux continu de valeur!

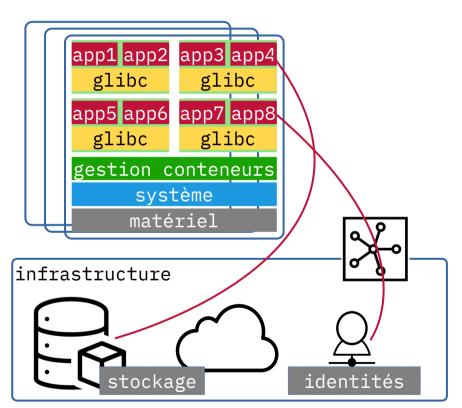
Créer un pipeline fluide et continu de la conception à la mise en production, en mettant l'accent sur la livraison rapide de valeur.

Le plan

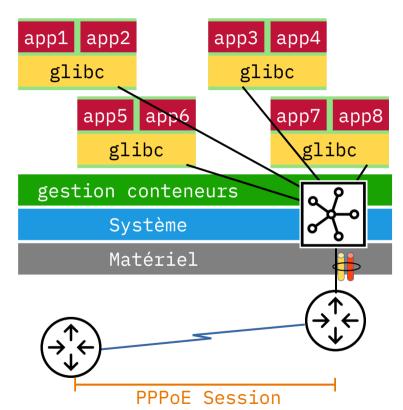

- Progression sur 2 ans
- Concepts Unix et GNU/Linux
- Modélisation d'un système GNU/Linux

Progression sur 2 ans

3ème année de licence + 1ère année de master

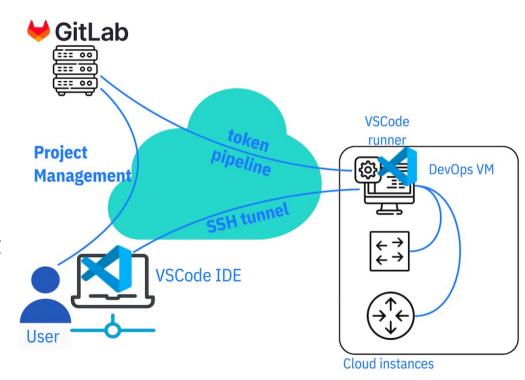

Progression sur 2 ans - L3

- Administrer un système
 - Identifier les composants d'une distribution Linux : Debian
 - Gérer des paquets
 - Gérer des conteneurs système
 - Gérer des machines virtuelles
 - Créer et personnaliser des comptes utilisateurs locaux
 - Identifier les ressources systèmes
 - Gérer les processus


Progression sur 2 ans - M1

- Administrer des systèmes
 - Définir les types de stockage
 - Choisir et configurer une solution de stockage réseau iSCSI ou NFSv4
 - Installer et configurer un annuaire LDAP
 - Associer identité et système de fichiers

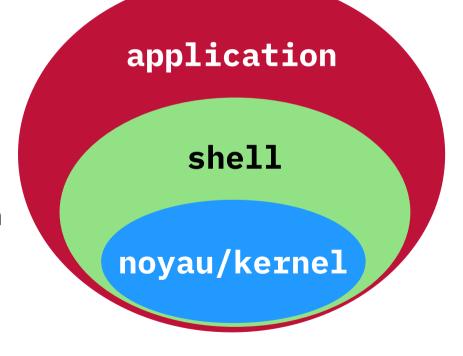
Progression sur 2 ans - M1


- Interconnecter des réseaux hétérogènes
 - Configurer une liaison WAN PPPoE
 - Utiliser le routage inter-VLAN
 - Configurer un réseau de conteneurs
 - Configurer le protocole de routage dynamique OSPF

Progression sur 2 ans - M1

Automatisation

- Identifier les modèles de conception et de développement
- Utiliser des APIs REST en Python
- Déployer des conteneurs et des routeurs avec Ansible
- Construire des pipelines
 CI/CD avec GitLab

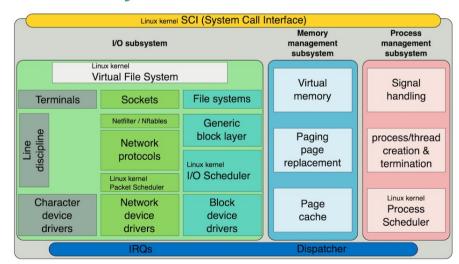


Progression de ce module

3ème année de licence

3 séances de cours

- Cours 1 & 2
 - Définir les 5 fonctions de base des systèmes Unix
 - Définir les 3 couches de la modélisation d'un système d'exploitation
 - Définir les types de virtualisation et de conteneurs
 - Définir une distribution
 GNU/Linux

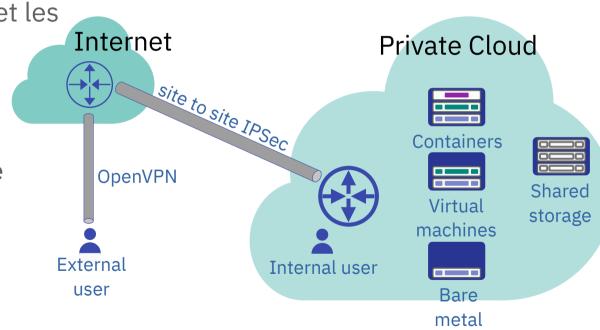

- Identifier les licences

3 séances de cours

Cours 3

- Décrire les protocoles des environnements graphique
- Définir les fonctions du shell BASH
- Définir les permissions sur les fichiers Unix
- Décrire les outils de l'initialisation système

Initialisation système - Linux Kernel



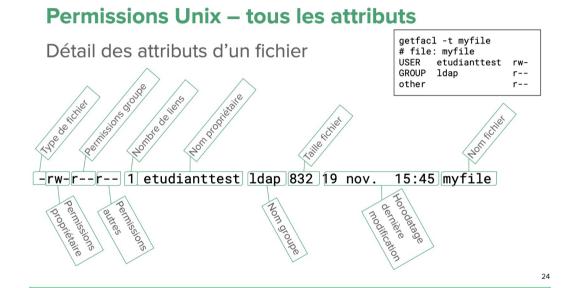
Accéder au cloud privé de la formation

Travaux Pratiques 1

 Identifier les types et les modes d'accès aux "Clouds"

- Utiliser un VPN
- Lancer une machine virtuelle
- Configurer un gestionnaire de conteneurs

Gérer les paquets et les conteneurs


Travaux Pratiques 2

- Définir les fonctions clés de la gestion de paquets
- Utiliser l'Advanced
 Package Tool → apt
- Utiliser les outils de la gestion de paquets : dpkg, aptitude
- Installer et configurer le gestionnaire de conteneurs Incus

```
Annuler Paguet Solutions Rechercher Options Vues Aide
 T: Menu ?: Help g: Ouit u: Update g: Preview/Download/Install/Remove Pkgs
 -\ Paquets pouvant être mis à jour (5)
                    Ensembles de routines logicielles (4)
                    Navigateurs, serveurs, serveurs mandataires et outils pour le web (1)
  - Nouveaux paquets (384)
 -- Paguets installés (495)
  - Paguets non installés (68166)
 -- Paguets virtuels (69203)
Les paquets de la section « web » comprennent des navigateurs Web, des serveurs Web, des serveurs mandataires, des logiciels pour écrire des
scripts CGI ou des programmes basés sur le Web, des programmes pré-écrits pour le Web et d'autres logiciels pour le World Wide Web
Ce groupe contient 1 paquet
```

Gérer les processus et le permissions

- Travaux Pratiques 3
 - Présenter les environnements graphiques
 - Utiliser le shell Bash
 - Gérer les processus
 - Gérer les permissions Unix
 - Définir les processus d'initialisation système

Concepts Unix et GNU/Linux

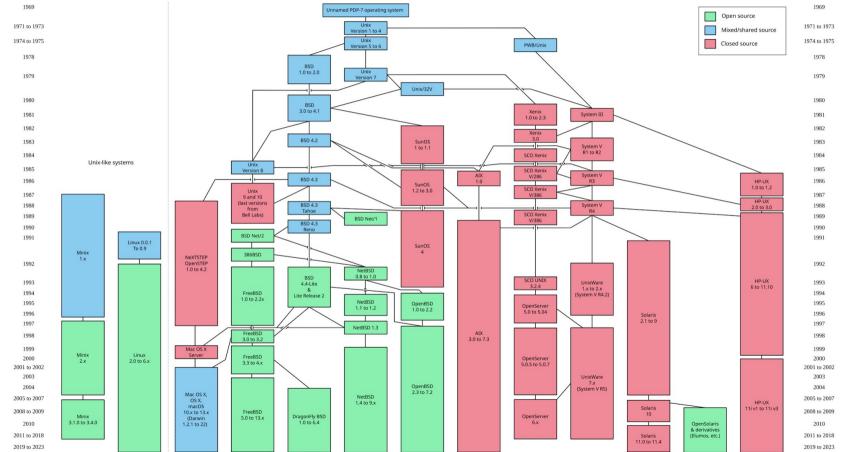
« Unix est fondamentalement un système d'exploitation simple, mais il faut être un génie pour comprendre sa simplicité. »

Dennis Ritchie

Définir la notion de culture...

« un ensemble lié de manières de penser, de sentir et d'agir plus ou moins formalisées qui, étant apprises et partagées par une pluralité de personnes, servent, d'une manière à la fois objective et symbolique, à constituer ces personnes en une collectivité particulière et distincte. »

Guy Rocher – https://fr.wikipedia.org/wiki/Culture


Développer une culture système, c'est...

- Identifier les étapes d'une histoire continue sur 5 décennies
- Comparer la genèse des systèmes Unix avec celle des services Internet
- Identifier les processus d'assurance qualité des distributions
- Décrire les nouveaux processus métier → DevOps!

Les 5 fonctions de base des systèmes Unix

- Multi-tâches
 - Temps processeur partagé entre plusieurs programmes
- Multi-utilisateurs
 - Ressources système partagées entre plusieurs utilisateurs
- Portabilité
 - Outils système partagés entre cibles matérielles différentes
- Bibliothèques de développement standard
 - Optimiser la qualité des développements en partageant le code source
- Applications communes
 - Services système, services Internet, etc.

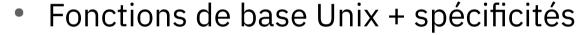
L'histoire Unix

1969 - Unics - AT&T - System V

- Unix est un système «accidentel»
 - AT&T Bell labs Ken Thompson -Dennis Ritchie
 - 1973 réécriture en Langage C
 - Diffusion sous licence AT&T incluant la totalité du code source
 - 1975 publication
 RFC681 NETWORK UNIX
- Apparition des Unix constructeurs
 - Coût matériel + licence prohibitif
 - Versions constructeurs incompatibles entre elles

1977 - Berkeley University - BSD

- Branche Unix lancée à partir d'une licence AT&T
 - Nombreuses améliorations
 - Gestion mémoire
 - Sous-système réseau TCP/IP
 - Diffusion entre universités
 - Début de l'Internet universitaire
- Procès AT&T vs Berkeley
 - BSD → système complet autonome
 - Éclatement de la branche BSD
 - FreeBSD, NetBSD et OpenBSD


1984 – GNU – Not Unix

- Projet lancé par Richard Stallman → 2 objectifs
- Promouvoir les logiciels libres
 - Protection des travaux des développeurs à l'aide de licences
 - Fédérer les développements libres
 - Applications GNU
- Utiliser les fonctions Unix comme modèle
 - Fonctions de base déjà éprouvées
 - 1990 chaîne de développement stable
 - GNU Compiler Collection

1991 – Débuts du noyau Linux

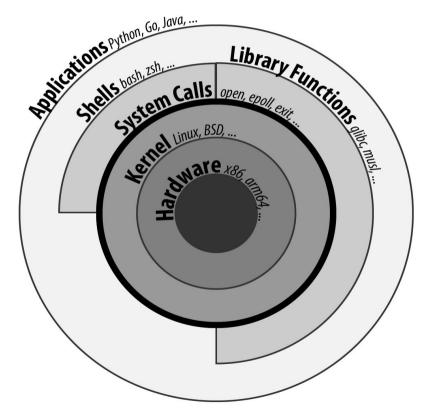
- Développement initié par Linus Torvalds
 - «divergences de vues» avec A.S. Tanenbaum
 - http://www.oreilly.com/catalog/opensources/book/appa.html

- Multi-tâches
- Multi-utilisateurs
- Gestion mémoire
 - Répétitive et étendue → mémoire virtuelle
 - Isolation entre les processus

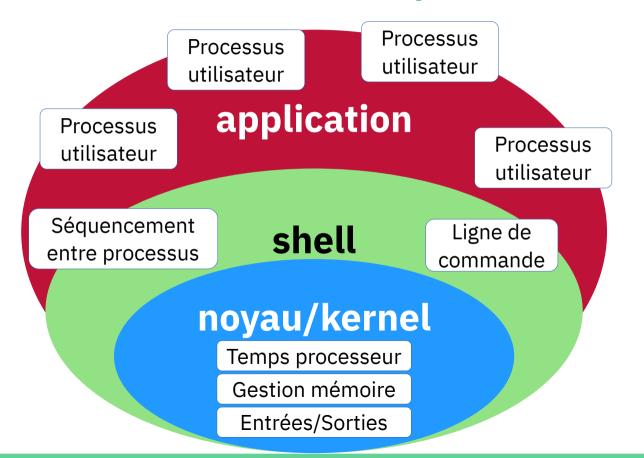
Modéliser le système GNU/Linux

Le modèle en 3 couches - 1/2

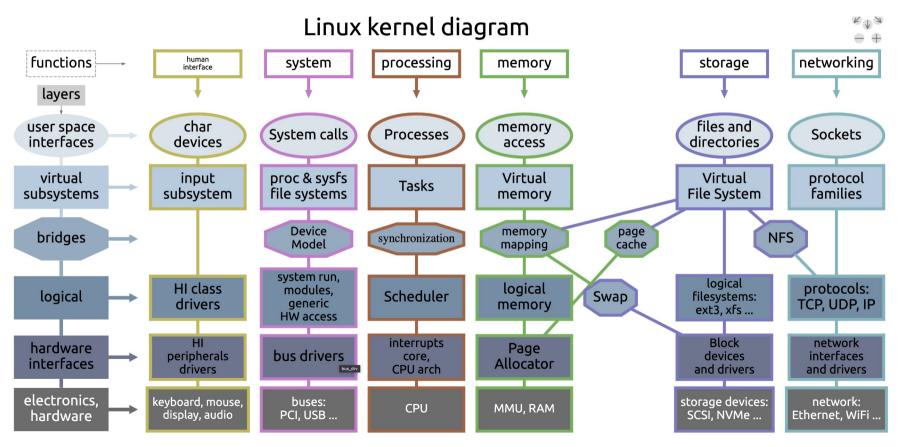
Noyau/kernel → 3 fonctions


- Temps processeur
- Mémoire
- Entrées/Sorties

Shell → 2 fonctions

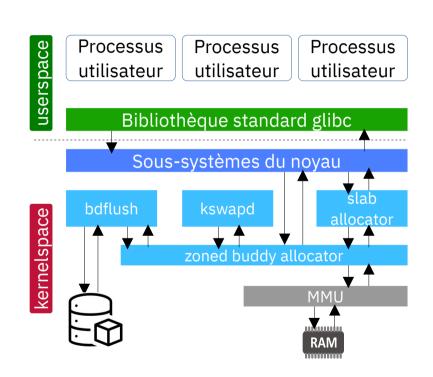

- Séquencement entre processus
- Ligne de commande

Application


Tous les processus utilisateur

Le modèle en 3 couches - 2/2

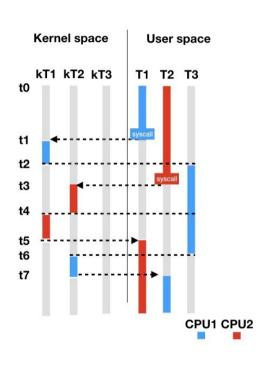
Linux Kernel diagram


Définir la notion de mémoire virtuelle

userspace

- Programmes utilisateurs
- Bibliothèque standard glibc

kernelspace


- Memory Management Unit (MMU)
- Zoned buddy allocator
 - Allocation pages mémoires
- Slab allocator
 - Cache dans les pages mémoire
- Kernel threads
 - Réutilisation de la mémoire

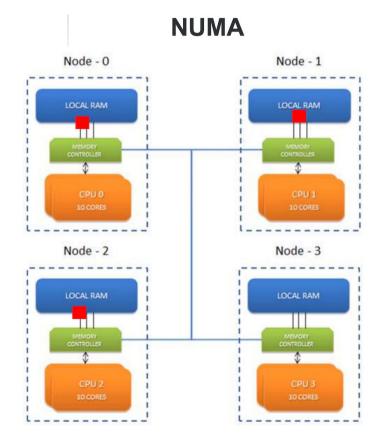
Définir la notion d'ordonnanceur (scheduler)

3 domaines ou types de tâches

- Domaine temps réel
 - Contraintes de temps d'exécution
 - Fréquence d'exécution garantie
- Domaine entrées/sorties
 - Attente de disponibilité des périphériques
- Domaine CPU
 - Temps consacré aux calculs
 - Tranche de temps CPU / time slice
 - Durée d'exécution d'un processus sur un cœur

Définir la notion d'ordonnanceur (scheduler)

Tranche de temps CPU (time slice)


 Durée d'exécution d'un processus sur un cœur

Préemption

 Interruption d'un processus par un second de priorité plus élevée

NUMA (Non-Uniform Memory Access)

- Placer la mémoire avec les processeurs
- Éviter les variations sur les temps d'accès

Bilan du cours 1

Retenir les points clés

Les systèmes GNU/Linux → 5 fonctions de base Unix

- Multi-tâches
- Multi-utilisateurs
- Portabilité
- Bibliothèques de développement standard
- Applications communes

Retenir les points clés

Le modèle en 3 couches d'un système GNU/Linux

- Noyau/kernel (gestion des ressources)
- Shell (interface utilisateur)
- Applications (processus utilisateur)

Décrire les concepts clés

Les points forts du noyau Linux

- Mémoire virtuelle
- Ordonnanceur (scheduler)
- Préemption